首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32381篇
  免费   6472篇
  国内免费   7754篇
测绘学   1987篇
大气科学   7332篇
地球物理   8198篇
地质学   16186篇
海洋学   4040篇
天文学   1500篇
综合类   3629篇
自然地理   3735篇
  2024年   56篇
  2023年   492篇
  2022年   1365篇
  2021年   1542篇
  2020年   1385篇
  2019年   1473篇
  2018年   1789篇
  2017年   1659篇
  2016年   1918篇
  2015年   1554篇
  2014年   1965篇
  2013年   1831篇
  2012年   1806篇
  2011年   1854篇
  2010年   2017篇
  2009年   1982篇
  2008年   1685篇
  2007年   1663篇
  2006年   1410篇
  2005年   1239篇
  2004年   981篇
  2003年   965篇
  2002年   947篇
  2001年   924篇
  2000年   1111篇
  1999年   1519篇
  1998年   1245篇
  1997年   1336篇
  1996年   1106篇
  1995年   1025篇
  1994年   909篇
  1993年   799篇
  1992年   658篇
  1991年   461篇
  1990年   321篇
  1989年   352篇
  1988年   298篇
  1987年   210篇
  1986年   162篇
  1985年   119篇
  1984年   104篇
  1983年   77篇
  1982年   79篇
  1981年   55篇
  1980年   47篇
  1979年   29篇
  1978年   16篇
  1977年   9篇
  1976年   7篇
  1958年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The axisymmetric formulation of the governing equations for geomechanics in the framework of smoothed particle hydrodynamics (SPH) is presented in this study. Two forms of SPH discretization for the motion equations, which are labeled as form I and form II, are proposed, and the methods to compute the hoop stress and strain terms including hoop strain rate and the acceleration introduced by the hoop stress are compared. To avoid possible singularity problem near the axis of symmetry, a perfectly smooth contact along with ghost particles are applied to prevent the real particles from overly approaching the axis of symmetry to remove this potential singularity. In addition, the Mohr–Coulomb constitutive model is implemented into the SPH formulation in describing soil behavior. Four numerical tests are carried out to validate and compare the accuracy and stability of the proposed algorithms, and their results are compared with analytical solutions and results from FEM analysis. The performance in these comparisons suggests that SPH II with hoop terms computed through direct hoop method is more stable than the others, and the adoption of contact for the symmetric axis is efficient in eliminating the singularity problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
992.
The effects of climate change and population growth in recent decades are leading us to consider their combined and potentially extreme consequences, particularly regarding hydrological processes, which can be modeled using a generalized extreme value (GEV) distribution. Most of the GEV models were based on a stationary assumption for hydrological processes, in contrast to the nonstationary reality due to climate change and human activities. In this paper, we present the nonstationary generalized extreme value (NSGEV) distribution and use it to investigate the risk of Niangziguan Springs discharge decreasing to zero. Rather than assuming the location, scale, and shape parameters to be constant as one might do for a stationary GEV distribution analysis, the NSGEV approach can reflect the dynamic processes by defining the GEV parameters as functions of time. Because most of the GEV model is designed to evaluate maxima (e.g. flooding, represented by positive numbers), and spring discharge cessation is a ?minima’, we deduced an NSGEV model for minima by applying opposite numbers, i.e. negative instead of positive numbers. The results of the model application to Niangziguan Springs showed that the probability of zero discharge at Niangziguan Springs will be 1/80 in 2025, and 1/10 in 2030. After 2025, the rate of decrease in spring discharge will accelerate, and the probability that Niangziguan Springs will cease flowing will dramatically increase. The NSGEV model is a robust method for analysing karst spring discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
993.
Maize growth has great effects on soil properties and thus likely induces the changes in soil erosion resistance on sloping farmland. However, temporal variation of soil erosion resistance during the growth stages of maize is still unclear in the mountainous yellow soil area where maize is the dominant crop. In this study, four maize plots (MP) and four bare land plots (CK) were conducted to investigate soil erosion resistance, and multiple indicators of soil erosion resistance were measured including the total soil anti-scourability (TAS), mean weight diameter (MWD), soil erodibility K factor and soil shear strength (SH). A comprehensive soil erosion resistance index (CSERI) was employed to quantify the temporal variation of soil erosion resistance during the growth stages of maize (seedling stage, SS; jointing stage, JS; tasselling stage, TS; maturing stage, MS). The results showed that TAS, MWD, SH increased significantly with maize growth and SH decreased when at MS. But K factor decreased significantly over time. CSERI increased significantly during the growth stages of maize and the CSERI of JS, TS, MS increased on average by 74.72, 180.68 and 234.57% than that of SS. Compared to CK, CSERI of MP increased by 49.90, 66.82, 55.60 and 38.61% during the growth stages of maize. The temporal variation of soil erosion resistance was closely related to the changes in maize cover, maize roots and soil organic carbon. The findings demonstrated that it is necessary to consider the temporal variation of soil erosion resistance in the mountainous yellow soil area.  相似文献   
994.
As a result of global warming induced permafrost degradation in recent decades, thermokarst lakes in the Qinghai–Tibet plateau (QTP) have been regulating local hydrological and ecological processes. Simulations with coupled moisture–heat numerical models in the Beiluhe basin (located in the hinterland of permafrost regions on the QTP) have provided insights into the interaction between groundwater flow and the freeze–thaw process. A total of 30 modified SUTRA scenarios were established to examine the effects of hydrodynamic forces, permeability, and climate on thermokarst lakes. The results indicate that the hydrodynamic condition variables regulate the permafrost degradation around the lakes. In case groundwater recharges to the lake, a low–temperature groundwater flow stimulates the expansion of the surrounding thawing regions through thermal convection. The thawing rate of the permafrost underlying the lake intensifies when groundwater is discharged from the lake. Under different permeability conditions, spatiotemporal variations in the active layer thickness significantly influence the occurrence of an open talik at the lake bottom. A warmer and wetter climate will inevitably lead to a sharp decrease in the upper limit of the surrounding permafrost, with a continual decrease in the duration of open talik events. Overall, our results underscore that comprehensive consideration of the relevant hydrologic processes is critical for improving the understanding of environmental and ecological changes in cold environments.  相似文献   
995.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
996.
The problem of predicting the geometric structure of induced fractures is highly complex and significant in the fracturing stimulation of rock reservoirs. In the traditional continuous fracturing models, the mechanical properties of reservoir rock are input as macroscopic quantities. These models neglect the microcracks and discontinuous characteristics of rock, which are important factors influencing the geometric structure of the induced fractures. In this paper, we simulate supercritical CO2 fracturing based on the bonded particle model to investigate the effect of original natural microcracks on the induced‐fracture network distribution. The microcracks are simulated explicitly as broken bonds that form and coalesce into macroscopic fractures in the supercritical CO2 fracturing process. A calculation method for the distribution uniformity index (DUI) is proposed. The influence of the total number and DUI of initial microcracks on the mechanical properties of the rock sample is studied. The DUI of the induced fractures of supercritical CO2 fracturing and hydraulic fracturing for different DUIs of initial microcracks are compared, holding other conditions constant. The sensitivity of the DUI of the induced fractures to that of initial natural microcracks under different horizontal stress ratios is also probed. The numerical results indicate that the distribution of induced fractures of supercritical CO2 fracturing is more uniform than that of common hydraulic fracturing when the horizontal stress ratio is small.  相似文献   
997.
The effects of fractures on wave propagation problems are increasingly abstracting the attention of scholars and engineers in rock engineering field. This study aims to fully validate the ability of discontinuous deformation analysis (DDA) to model normal P‐wave propagation across rock fractures. The effects of a single fracture and multiple parallel fractures are all tested. The results indicate that DDA can accurately reflect the fracture effects, including the fractures stiffness, the fracture spacing and the fracture number, and the effects of incident wave frequency on one‐dimensional P‐wave propagation problems. Thus, DDA is able to deal well with normal incident P‐wave propagation problems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
998.
In this study, we investigate the Lesser Antilles forearc basin, focusing on the late Pliocene to Pleistocene sedimentary archives in order to track the occurrence of extreme events triggered by enhanced subduction‐related tectono‐volcanic activity. We identify late Piacenzian deposits covering a major regional erosional surface, displaying sedimentary dykes and large marine boulders embedded in a mixed continental–marine matrix, characteristic of tsunamites. We interpret this episode of platform emersion and the successive cataclysmic deposits as resulting from enhanced tectonic activity at the interface of the subduction zone, synchronous with the initiation of the Lesser Antilles volcanic arc. We then discuss the implications in terms of the mechanical behaviour of the Lesser Antilles subduction zone.  相似文献   
999.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1000.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号